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It has been established that the linear boundary mass-exchange conditions in the form of the Newton law
are unsuitable for description of the initial period of drying and the constant-rate period. The nonlinear
boundary conditions of the third kind based on the Dalton evaporation law have been proposed. A numeri-
cal algorithm for investigation of the temperature and moisture-content fields up to the dropping-rate period
has been developed.

Introduction. One formula describing the mass exchange between a moist material and an air medium is the
Dalton evaporation law, according to which the intensity of mass exchange is in proportion to the difference of steam
partial pressures on both sides of the boundary layer. This expression for the intensity of drying has a clear physical
interpretation, and from the viewpoint of A. V. Luikov, it is precisely this expression that is consistent with experi-
ment better than others. Nonetheless, we have found just a small number of works on drying theory, where the Dalton
evaporation law is used. Believe that the reason is that this formula represents a nonlinear boundary condition with
which the initial problem can only be solved by numerical methods; at the same time, both A. V. Luikov and his fol-
lowers mainly adhere to linearized heat- and mass-transfer equations and to analytical investigation methods based on
the Laplace transformation. In such an approach, the boundary mass-exchange conditions are traditionally taken in the
form of the Newton linear conditions where the intensity of evaporation of moisture from the specimen surface is in
proportion to the difference between the running moisture content on this surface and the equilibrium moisture content
of the material. In what follows we will show that, at least for the initial period of drying and the period of constant
rate, the Newton conditions result in a conflict with experiment and must be replaced by the Dalton conditions. This
fundamental fact is still not clearly understood. We hope that the work proposed will make it possible to eliminate this
drawback.

Constant-Rate Period and Mass Exchange by the Newton Law. Let us consider the process of convective
drying of a plate manufactured from a moist material (Fig. 1). The condition of heat and moisture insulation of the
lower plate surface x = d means that the initial object of study is a specimen of thickness 2d, in which the heat fluxes
and moisture flows through the plate of symmetry x = d are absent due to the identity of the boundary conditions at
the boundaries x = 0 and x = 2d. The problem on finding the fields of the temperature T and the moisture content U
will be assumed to be spatially one-dimensional where the functions sought are dependent just on the coordinate x and
the time τ, i.e., T = T(x, τ) and U = U(x, τ). Such an approximation will be justified if the thickness of the plate d
is small compared to its dimensions in directions perpendicular to the x axis, and the intensities of heat and mass ex-
change of the plate’s surface with the incident air flow change along this surface only slightly. The initial boundary-
value problem for calculation of the functions T and U has the following form [1]:
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 (d, τ) = 0 ,   
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∂x
 (d, τ) = 0 , (5)

T (x, 0) = T0 ,   U (x, 0) = U0 . (6)

These relations have not yielded a complete mathematical model of the process so far, since the form of the function
j(τ) calls for additional discussion.

Problems for the diffusion equation are known to possess the property that their solutions at τ → ∞ cease to
be dependent on the initial data. This statement for the particular case has been proved in [2]. Relying on the unique-
ness theorem, we can assign the following meaning to it: any solution of the initial boundary-value problem, obtained
in one manner or another and satisfying all the conditions formulated minus the initial conditions, will be the solution
of the initial problem at τ → ∞. Such solutions will be called steady-state ones. In our case the steady-state solution
can be constructed as follows. We set

∂T

∂τ
 = 0 ,   

∂U

∂τ
 = const . (7)

Since we have T = T(x), it follows from (3) that the intensity of drying j(τ) is independent of time. Let us introduce
the following notation:

j (τ) = const B jw ,   T (x)
x=0

 B Tw ,   U (x, τ)
x=0,τ=τw

 B Uw . (8)

We show that the steady-state solution of problem (1)–(6) is uniquely determined by conditions (7) and (8). Integrating
both sides of (2) for x going from 0 to d, we obtain
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Fig. 1. Scheme of convective drying of a plate manufactured from a moist ma-
terial: 1) heated-air flow; 2) boundary layer; 3) moist specimen; 4) heat and
moisture insulation.
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Using boundary condition (4), where it is necessary to set j(τ) = jw, and boundary condition (5) in substitut-
ing the limits of integration, we will have

∂U

∂τ
 = − 

jw
ρ0d

 . (9)

With account for this formula, Eqs. (1) and (2) are written, after the transformations, as
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Here we have introduced the following notation:
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From Eqs. (10), it is seen that the stationary temperature distribution and the simultaneous moisture-content distribu-
tions are parabolic. The form of these parabolas is uniquely determined by formulas (5) and (8)–(11). Carrying out the
necessary computations, we obtain
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 ,   
U (x, τ) − Uw

∆U
 = 1 − 





x

d
 − 1





2

 − 
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ρ0d∆U
 (τ − τw) ,   τ > τw . (12)

The vertices of these parabolas are at the center of the plate (for x = d), and the constants ∆T and ∆U have the
meaning of temperature and moisture-content differences between the center of the plate and its surface: ∆T = T(d)
−T(0) < 0 and ∆U = U(d, τ) − U(0, τ) > 0. The form of the parabolic distributions (12) is qualitatively shown in
Fig. 2. The quasistationary regime presented in the figure is known to be established indeed. It is called the regime
of constant drying rate. It begins at a certain instant of time τw, when the plate surface temperature becomes equal
to the wet-bulb temperature Tw, and ends at the instant τcr, when the moisture content average over the plate thick-
ness decreases to the critical value Ucr. The characteristics of this regime jw, Tw, Uw, and τw are usually determined
from experiment. If it is necessary to have a closed mathematical model of the process and to find these parameters
from calculations, we must select one law of mass exchange. As has already been noted, in this case one tradition-
ally uses the Newton law

j (τ) = βm [U (0, τ) − Ueq] . (13)

Fig. 2. Temperature and moisture-content distributions in the regime of con-
stant drying rate (τw < τ < τcr).
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However, it is easy to verify that this formula is in conflict with the solution constructed: the quantity U(0, τ) varies
with time (Fig. 2); therefore, contrary to requirement (8), the intensity of drying j(τ) cannot remain constant. Conse-
quently, it is expedient to consider other mass-exchange models different from the Newton law (13).

Mass Exchange by the Dalton Law. In this case the intensity of drying is determined by the expression

j (τ) = αm [Ps (τ) − Pair] . (14)

Here and in what follows the total pressure of moist air is assumed to be normal. The relative partial pressure of a
saturated steam P as a function of its temperature T will be modeled by the formula proposed by G. K. Filonenko [1]:

P (T) = 6.03⋅10
−3⋅exp 

17.3⋅T
T1 + T

 ,   T1 B 238
o
C . (15)

In what follows, for the sake of brevity, the relative partial pressure of the steam will be called simply pressure. It is
well known that, before the period of dropping drying rate, the steam near the material surface is assumed to be satu-
rated. This means that Ps(τ) = P(T(0, τ)), i.e., the pressure of the steam near the surface is equal to the pressure of a
saturated steam at the surface temperature. It follows from determination of the air humidity ϕ that the steam pressure
outside the boundary layer is determined by the formula Pair = ϕP(Tair). Consequently, the Dalton evaporation law
(14) will appear as follows:

j (τ) = αm [P (T (0, τ)) − ϕP (Tair)] . (16)

It is significant that this relation, unlike the Newton formula (13), is consistent with the regularities of the constant-
rate period: at a constant surface temperature T(0, τ), the intensity of drying j(τ) will remain constant, too, in complete
agreement with (8). The coefficients of heat and mass exchange for the laminar state of the boundary layer (Re
< 5⋅105) can be calculated from the formulas [3]

α = 0.662⋅
λair

L
 Pr

1 ⁄ 3 Re
1 ⁄ 2 ,   αm = 0.662⋅

λm

L
 Prm

1 ⁄ 3 Re
1 ⁄ 2 . (17)

Here the parameters λair, Pr, and Prm (as well as ν in the subsequent discussion) must be determined at the temperature
Tav = (Tair + Tw)/2 and humidity ϕav = (ϕ + 1)/2 average over the boundary-layer thickness, and the expression [3, 4]

λm = 
D0p0µ

R (Tav + T2)
 




Tav

T2
 + 1





2.07

 ,   T2 B 273
o
C (18)

is valid for the moisture conductivity of air. Let us compute the coefficients of heat and mass exchange at Tav =
50oC and ϕav = 0.7. According to the experimental data of [5], here, λair = 2.73⋅10−2 W/(m⋅oC), Pr = 0.73, Prm =
0.58, and ν = 1.81⋅10−5 m2/sec, and calculations from formula (18) yield λm = 1.96⋅10−5 kg/(m⋅sec). Substituting these
values into (17), we obtain

α = k1 √V
L

 ,   αm = k2 √V
L

 , (19)

where k1 ≡ 3.82 kg/(sec5 ⁄ 2⋅oC) and k2 ≡ 2.54⋅10−3 kg/(sec1 ⁄ 2⋅m2). Let Tav and ϕav depart from the values taken above
in the following limits:

20
o
C < Tav < 80

o
C ,   0.6 < ϕav < 0.8 . (20)

An analysis of λair, λm, Pr, Prm, and ν as functions of temperature and humidity shows that in this case we must pri-
marily allow for the temperature changes λair, λm, and ν, whereas the remaining changes can be disregarded. Denoting
the increments of all the quantities by the symbol ∆ and assuming them to be small, from formulas (17) we will have
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From the experimental data of [5], we find that ∆λair/λair = 0.075 and ∆ν = ν = 0.18 at ∆T = 30oC, and computations
from formula (18) yield ∆λm/λm = 0.095. Substituting these values into (21), we obtain that, when the state of the
boundary layer varies in the limits determined by inequalities (20), formulas (19) yield an error no higher than 1.5%
for α and 0.5% for αm. Thus, within the framework of the approximations made, formulas (15), (16), and (19) deter-
mine the intensity of drying j as a function of the parameters V, L, ϕ, and Tair and the surface temperature T(0, τ);
the condition of laminar state of the boundary layer has the form VL < 9.05 m2/sec.

Calculation of the Characteristics of the Constant-Rate Period. The constant parameters jw and Tw are re-
lated by the equations

jw = αm [P (Tw) − ϕP (Tair)] ,   jw = 
α
r

 (Tair − Tw) .
(22)

The first relation is a corollary of (16), whereas the second relation is obtained from (3) if we set T(0, τ) = Tw and
j(τ) = jw and compute the derivative ∂T ⁄ ∂x(0, τ) using (11) and (12). With account for formulas (19) for α and αm,
from (22) we obtain a transcendental equation for determination of the wet-bulb temperature:

P (Tw) − ϕP (Tair) = (Tair − Tw) ⁄ T3 ,   T3 B 1.50⋅10
3
 
o
C .

The results (Fig. 3) of numerical solution of this equation are in good agreement with the experimental data of [5].
Relying on the algorithm of calculation of Tw at prescribed Tair and ϕ, we can find, from (22), the intensity of drying
jw as a function of Tair, ϕ, V, and L. From Table 1 it is clear that the results thus obtained differ from the experimen-
tal data of [1] by no more than 10%. Thus, for the regime of constant drying rate, the computational algorithm pro-
posed above and based on the Dalton evaporation law leads to a satisfactory agreement with experiment.

Fig. 3. Wet-bulb temperature Tw vs. temperature of air Tair and its humidity ϕ.
Tw, oC; ϕ, %.

TABLE 1. Intensity of Mass Exchange jw (kg/(m2⋅h)) in the Regime of Constant Drying Rate as a Function of the Temperature
of Air Tair and Its Humidity ϕ for V = 2.1 m/sec and L = 0.08 m

Tair
ϕ = 37 % ϕ, %

Tair = 25oC

Calculation Experiment Calculation Experiment
15 0.213 0.22 76 0.100 0.11
25 0.289 0.32 54 0.203 0.18
35 0.365 0.40 37 0.289 0.32
45 0.449 0.50 21 0.382 0.40
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Numerical Investigation of Convective Drying. The parameters τw and Uw, as well as the temperature and
moisture-content distributions at 0 < τ < τw, i.e., in the initial period of drying, can only be calculated by numerical
methods. For this purpose we introduce a uniform rectangular grid

xj = j∆x ,   ∆x = 
d
n

 ,   j = 0, 1, 2, ..., n ;

τi = i∆τ ,   ∆τ = 
∆x

θ
 ;   i = 0, 1, 2, ... .

The grid functions corresponding to the functions T(x, τ) and U(x, τ) sought will be denoted as Tj
 i and Uj

 i. The array
of n T0

 i, T1
 i, ..., Tn

 i numbers, which represents the temperature distribution on the ith time layer, will be denoted as
T i. The notation U i will have an analogous meaning.

Let the arrays T i−1 and U i−1 be known. We consider the algorithm of calculation of T i and U i, i.e., the tem-
perature and moisture-content distributions on a new time layer. First we solve the problem for U i. Equations (4) and
(2) in finite-difference form will become

αm P (T0
i−1) − ϕP (Tair)


 = am ρ0 





U1
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 , (23)
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 + 

amδ
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 − 2Tj

 i−1
 + Tj−1

 i−1
 . (24)

Here the temperature distribution is taken from the previous time layer, i.e., is assumed to be known. In formula (24),
the Crank–Nicholson symmetric implicit scheme with a six-point template is used for representation of the second de-
rivative of U, whereas the second derivative of T is approximated by central differences. After the transformations of
(23) and (24), with account for the second equation of (5) we will have
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i−1
 −

− 2δ Tj−1
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 − 2Tj
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 + Tj+1
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 ,   Un−1
i

 − Un
i
 = 0 ,   j = 1, 2, ..., n − 1 .

This system of linear algebraic equations for unknown U0
 i, U1

 i, ..., Un
 i with a (n + 1) × (n + 1) triagonal matrix can be

solved by the marching method [6], as a result of which the array U i will be determined. Thereafter the array T i is
found in an analogous manner. Next the procedure described is iterated until the condition Uav < Ucr is fulfilled. Initial
conditions (6) corresponding to the time layer i = 0 are those starting for computations.

The parameter of the grid n is determined by the required accuracy of computations, and the minimum pos-
sible parameter θ for which the numerical procedure still remains stable is selected. Next we took n = 50, and the sta-
bility condition had the form θ > 20a/d, or ∆x∗ ⁄ ∆τ∗ > 20, where ∆x∗ = ∆x ⁄ d and ∆τ∗ = a∆τ ⁄ d2 are the dimensionless
coordinate and time steps of the grid.

For numerical experiments we selected a material with the characteristics of clay: λ = 0.93 W/(m⋅oC), c =
1.8⋅103 J/(kg⋅oC), ρ0 = 1.5⋅103 kg/m3, am = 2.6⋅10−8 m2/sec, δ = 1.5⋅10−3 1/oC, ε = 0.1, and Ucr = 0.1. The charac-
teristics of the air flow outside the boundary layer, the dimensions of the plate, and the initial conditions are as fol-
lows: Tair = 100oC, V = 2 m/sec, ϕ = 0.5, L = 0.4 m, d = 0.04 m, T0 = 20oC, and U0 = 0.4. We consider the case
where a moist plate having a low temperature of T0 = 20oC begins to be blown with hot air with temperature Tair =
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100oC at the instant τ = 0. The results of the numerical experiments are presented in Figs. 4 and 5 and in Table 2. It
is clear from the table that the condensation of moisture rather than its evaporation occurs on the plate surface before
the instant τ = 1.66 h. The reason is that the steam pressure on this time interval turns out to be lower than that in
air outside the boundary layer. The condensation of the steam in turn leads to an increase in the moisture content of
the material, as is seen in Fig. 4. First the quantity U monotonously increases for all x; the increase is particularly
rapid on the surface. Thereafter, nearly from the instant τ = 0.3 h, the moisture content on the surface attains its maxi-
mum and begins to decrease, whereas at the center of the plate, it does continue to increase. Finally, at τ > 4 h, U
decreases for all x now. Thus, in the initial period of drying, the field of moisture content has the character of a
damped wave propagating from the surface of the plate to its center. The amplitude ∆U ⁄ U0 of this wave of increase
in the moisture content rapidly decreases, as it moves deep into the specimen: whereas on the surface, it amounts to
35%, at the center, it amounts to only 8%. It is significant that it is precisely such a pattern of development of the
moisture-content field that is observed for the stage of heating of the material in experiment [1].

Figure 5 gives an idea of the development of the temperature field, whose feature is a rapid heating of the
material throughout the depth at the very beginning of drying. It is significant that this intensification of thermal proc-
esses is directly related to the condensation of the steam as discussed above. We consider the manner in which the
heat flux qint = −λ∂T ⁄ ∂x(0, τ) coming into the plate from its surface varies with time. According to boundary condi-
tion (3), qint = qair + qc, where qair = α[Tair − T(0, τ)] is the heat flux supplied to the surface from air, and qc =
−r(1 − ε)j(τ) is the density of the surface heat fluxes due to the condensation of the steam on this surface. It is clear
from Table 2 that the condition qint C qc, i.e., the initial intense heating of the material occurs mainly due to the heat

Fig. 4. Distribution of the moisture content U in the initial period of drying: 1)
0, 2) 0.0019; 3) 0.0135, 4) 0.26, 5) 0.7, 6) 1.06, 7) 1.99, 8) 3.87, and 9) 8.39 h.
U, kg/kg.

Fig. 5. Distribution of the temperature T before the period of dropping drying
rate: 1) 0, 2) 0.01, 3) 0.02, 4) 0.04, 5) 0.07, 6) 0.19, 7) 0.44, 8) 0.88, and 9) 4.0
< τ < 83.2 h. T, oC.
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released in steam condensation rather than due to the heat coming from air, is fulfilled nearly to the instant τ = 0.4
h. Nearly from the instant of time τ = 4 h, the numerical solution acts in complete agreement with the analytical so-
lution (12), i.e., the period of constant drying rate begins. The values of the parameters for this period are as follows:
Tw = 82.3oC, jw = 6.68⋅10−5 kg/(m2⋅sec), ∆T = 0.325oC, ∆U = 0.0342 kg/kg, Uw = 0.42 kg/kg, and τw = 4.0 h. The
parabolic distributions characteristic of the constant-rate period include curves 9 in Figs. 4 and 5 (the scale selected in
the last figure makes it impossible to consider the shape of curve 9, since the temperature difference between the cen-
ter of the plate and its surface is only 0.3oC). The constant-rate period ends by the instant τcr = 83.2 h, when the con-
dition Uav = Ucr turns out to be fulfilled. The period of dropping rate following the constant-rate period can no longer
be considered within the framework of this model, since boundary condition (16) is no longer fulfilled (the steam at
the surface ceases to be saturated).

The obtained results of numerical investigation of convective drying with the Dalton boundary conditions are
in complete qualitative and quantitative agreement with experimental data. In particular, the numerical experiment has
confirmed that, before the dropping-rate period, we have the subdivision of the process into the nonstationary initial
period, when transient processes are observed (their duration is nearly 5% of τcr), and the quasistationary constant-rate
period with the characteristic parabolic distributions of the temperature and the moisture content. The solution of this
problem with the Newton boundary conditions (it has been obtained in [7]) has no characteristic subdivision into the
transient regime and the regime of constant rate and parabolic asymptotics for the moisture-content and temperature
fields, and the time variation in these quantities at any instant τ and for any x monotonously obeys a nearly exponen-
tial law. As has already been noted, these results are inconsistent with the experimental data for the initial period and
the constant-rate period.

Conclusions. A mathematical convective-drying model using the Newton mass-exchange law has been ana-
lyzed. It has been shown to be inconsistent with experimental data on the regularities of the initial period of drying
and the constant-rate period. Boundary conditions of mass exchange based on the Dalton evaporation law have been
proposed for investigation of these periods. The original numerical algorithm for calculation of the wet-bulb tempera-
ture and the intensity of drying in the regime of constant rate has been developed. Convective drying has numerically
been investigated up to the dropping-rate period by the difference method based on the Crank–Nicholson symmetric
implicit scheme with a six-point template. The results of numerical experiments are in good agreement with experi-
mental data. In particular, they confirm A. V. Luikov’s qualitative description of the processes of heat and mass trans-
fer in the initial period of drying: if the air temperature is higher than the initial material temperature, the drying
begins with the condensation of moisture on the surface rather than from evaporation; the material is rapidly heated
due to the heat released, and the moisture begins to move into the specimen, producing a wave of increased moisture
content. As far as the Newton mass-exchange conditions are concerned, from our viewpoint, they should be used only
for the dropping-rate period; the analytical solution (reported in a number of works) of the problem on convective dry-
ing of a plate [7] at least qualitatively follows the regularities of precisely this period.

This work was carried out with support from the Russian Foundation for Basic Research within the frame-
work of the regional competition "Povolzh’e (Volga Region)", grant 04-01-96502.

NOTATION

a = λ/(cρ0), coefficient of diffusion of heat, m2/sec; am, coefficient of diffusion of moisture, m2/sec; c, spe-
cific heat of the material, J/(kg⋅K); d, half the plate thickness, m; D0 = 2.05⋅10−5 m2/sec, coefficient of diffusion of a

TABLE 2. Intensity of Drying and Heat-Flux Densities at Different Instants of Time

τ, h 0 0.103 0.413 0.800 1.66 2.01 2.40 3.02 4.00 < τ < 83.2

j, 10−5

kg/(m2⋅sec)
–269 –113 –52.4 –23.8 0.0 3.20 5.02 6.23 6.68

qair, W/m2 683 260 200 175 160 155 151 151 151

qc, W/m2 5460 2294 1064 483 0.0 –65 –102 –126 –136

qint, W/m2 6143 2554 1264 658 160 90 49 25 15
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steam in air under normal conditions; j and jw, intensity of mass exchange between the upper boundary of the plate
and the air flow and its value in the regime of constant drying rate, kg/(m2⋅sec); L, plate length, m; n, parameter de-
termining the coordinate step of the grid; Ps and Pair, relative partial pressures of a steam near the plate surface and
in air outside the boundary layer; Pr and Prm, heat- and mass-exchange Prandtl numbers for air; p0, normal atmos-
pheric pressure, Pa; q, heat-flux density, W/m2; r, specific heat of vaporization of water, J/kg; R, universal gas con-
stant, J/(mole⋅K); Re = VL/ν, Reynolds number; T, T0, Tair, Tw, and Tj

 i, temperature of the material, its initial
temperature, temperature of air outside the boundary layer, wet-bulb temperature, and grid function, oC; U, U0, Ucr,
Uav, Ueq, Uw, and Uj

 i, moisture content of the material, its initial moisture content, critical moisture content, moisture
content average over the plate thickness, equilibrium moisture content, moisture content on the surface at the beginning
of the constant-rate period, and grid function, kg/kg; V, velocity of air outside the boundary layer, m/sec; x, Cartesian
coordinate, m; α, coefficient of heat exchange of the plate surface with the air flow, W/(m2⋅K); αm and βm, mass-ex-
change coefficients of the difference of partial pressure and moisture content, kg/(m2⋅sec); δ, coefficient of thermal dif-
fusion of moisture, 1/K; ∆x, coordinate step of the grid, m; ∆τ, time steps of the grid, sec; ε, evaporation coefficient;
θ, parameter relating the coordinate and time step of the grid, m/sec; λ, thermal conductivity of the material, W/(m⋅K);
λair, thermal conductivity of air, W/(m⋅K); λm, moisture conductivity of air, kg/(m⋅sec); µ, molar mass of water,
kg/mole; ν, kinematic viscosity of air, m2/sec; ρ0, density of the material in a dry state, kg/m3; τ, τw, and τcr, running
time and instants of the beginning and the end of the period of constant drying rate, sec; ϕ, humidity of air outside
the boundary layer. Subscripts: air, air; int, internal; c, condensation; cr, critical; w, wet bulb; s, surface; eq, equilib-
rium; av, average; m, moisture.
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